Chaos in dynamic atomic force microscopy.
نویسندگان
چکیده
In tapping mode atomic force microscopy (AFM) the highly nonlinear tip-sample interaction gives rise to a complicated dynamics of the microcantilever. Apart from the well-known bistability under typical imaging conditions the system exhibits a complex dynamics at small average tip-sample distances, which are typical operation conditions for mechanical dynamic nanomanipulation. In order to investigate the dynamics at small average tip sample gaps experimental time series data are analysed employing nonlinear analysis tools and spectral analysis. The correlation dimension is computed together with a bifurcation diagram. By using statistical correlation measures such as the Kullback-Leibler distance, cross-correlation and mutual information the dataset can be segmented into different regimes. The analysis reveals period-3, period-2 and period-4 behaviour, as well as a weakly chaotic regime.
منابع مشابه
Effects of Fluid Environment Properties on the Nonlinear Vibrations of AFM Piezoelectric Microcantilevers
Nowadays, atomic-force microscopy plays a significant role in nanoscience and nanotechnology, and is widely used for direct measurement at atomic scale and scanning the sample surfaces. In tapping mode, the microcantilever of atomic-force microscope is excited at resonance frequency. Therefore, it is important to study its resonance. Moreover, atomic-force microscopes can be operated in fluid e...
متن کاملSensitivity Analysis of Frequency Response of Atomic Force Microscopy in Liquid Environment on Cantilever's Geometrical Parameters
In this paper, the non-linear dynamic response of rectangular atomic force microscopy in tapping mode is considered. The effect of cantilever’s geometrical parameters (e.g., cantilever length, width, thickness, tip length and the angle between the cantilever and the sample's surface in liquid environment has been studied by taking into account the interaction forces. Results indicate that the r...
متن کاملDesign of Fractional Order Sliding Mode Controller for Chaos Suppression of Atomic Force Microscope System
A novel nonlinear fractional order sliding mode controller is proposed to control the chaotic atomic force microscope system in presence of uncertainties and disturbances. In the design of the suggested fractional order controller, conformable fractional order derivative is applied. The stability of the scheme is proved by means of the Lyapunov theory based on conformable fractional order deriv...
متن کاملChaos in atomic force microscopy.
Chaotic oscillations of microcantilever tips in dynamic atomic force microscopy (AFM) are reported and characterized. Systematic experiments performed using a variety of microcantilevers under a wide range of operating conditions indicate that softer AFM microcantilevers bifurcate from periodic to chaotic oscillations near the transition from the noncontact to the tapping regimes. Careful Lyapu...
متن کاملAdvances in atomic force microscopy
This article reviews the progress of atomic force microscopy in ultrahigh vacuum, starting with its invention and covering most of the recent developments. Today, dynamic force microscopy allows us to image surfaces of conductors and insulators in vacuum with atomic resolution. The most widely used technique for atomic-resolution force microscopy in vacuum is frequency-modulation atomic force m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanotechnology
دوره 17 7 شماره
صفحات -
تاریخ انتشار 2006